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The purpose of this experiment is to explore the properties of the Geiger-Muller tube and how it can be used
to detect radioactive particles, namely α, β, and γ rays. This is a three-part experiment. The first part
focusses on the operating parameters for the Geiger-Muller tube. The second part uses the Geiger tube to
explore the properties of Poisson statistics. And finally, the third part will explore the attenuation length of
γ-rays in aluminum.

I. BACKGROUND

The Gegier-Muller tube is a discharge tube with a
single high voltage wire suspended along the axis-of-
symmetry of a cylindrically shaped tube (See Fig. 1).
The tube contains a rarified gas that becomes ionized
when a charged particle passes through the volume. This
ionization results in electrons rapidly drifting toward the
high voltage anode, and the positive ions slowly drifting
to the grounded cylindrical shell. As the electrons ap-
proach the high voltage wire they experience a very large
electric field E and gain sufficient kinetic energy such
that they ”knock out” other electrons in nearby atoms
causing an avalanche of electrons. The miniature show-
ers occurring near the surface of the high voltage anode
result in a multiplication of negative charges as electrons
are collected on the wire. The multiplicative gain in the
number of electrons makes it possible to detect the “neg-
ative” pulse due to the electrons collected on the HV line.
More details can be found in the Leybold leaflet.

FIG. 1. In the Geiger-Muller tube above, electrons are pro-
duced by ionizing radiation passing through the cylinder. As
a result, electrons rapidly drift to the high voltage anode wire
at the center of the cylinder. An avalanche of electrons is
produced near the wire due to the large electric field thus
creating a measurable pulse on the high voltage line. In this
figure, U corresponds to the high voltage.

II. THE THREE EXPERIMENTS

There are many experiments that can be performed us-
ing the Geiger-Muller tube, but we are going to limit our-
selves to three. The first experiment is called “plateau-
ing the tube.” In this experiment, you will determine the
threshold voltage and the operating voltage range for the
tube. In the second experiment, you will explore Poisson
statistics for a low mean value and a high mean value.
In the third experiment, you will calculate the attenua-
tion length for aluminum as it absorbs γ-rays. The rate
of absorption will depends upon the energy of the γ-rays
and the thickness of the aluminum absorber.

A. Plateauing the Tube

Plateauing the Geiger-Mueller tubes is relatively
straight-forward and its purpose is twofold. First, you
will determine the threshold voltage (i.e., the voltage
where the tube “comes alive”); and second, you will find
the range of acceptable operating voltages where the GM
tube’s response is relatively constant (see Fig. 2). This
region is called the plateau region.

FIG. 2. This figure shows data collected by a Geiger-Muller
tube and a radioactive source at three distances, d =1 mm,
10 mm and 20 mm. The rates R are measured in counts/sec as
a function of the operating voltage U . The different rates for
different distances are due to the 1/r2 falloff of the Intensity
in radiation.

http://physicsx.pr.erau.edu/Courses/CoursesS2014/PS315/Geiger%20Muller/Characteristics%20GM%20tube.pdf
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Notice that as the distance d increases between the
source and the face of the GM tube, the rate R de-
creases. This reflects the the 1/r2 dependence in the
rate as the radioactive source is positioned at increas-
ing distances from the face of the GM tube. Also notice
that the threshold voltage for the tube is independent of
the rate R. The operating voltage for the tube shown in
Fig. 2 can be anywhere between 400-600 volts (i.e., on
the plateau). However, this voltage range (plateau) can
vary from tube to tube. This is the reason why each tube
must be plateaued before it is used. The range of oper-
ating voltages can vary from tube to tube. More details
can be found in the Leybold leaflet.

B. Poisson Statistics

Poisson statistics occurs when physical observations
are made through a “counting” process. Usually these
observations are due to a random source such that the
number of events counted tends to fluctuate from ob-
servation to observation. Two questions naturally arise
while pursuing the data analysis. “Is it possible to as-
cribe a mean value to each measurement?” And, “What
is the standard deviation for the measurement?” This can
be determined by using the statistical probability density
function (PDF) called the Poisson distribution P (µ, n).

P (µ, n) =
e−µ µn

n!
(Poisson function) (1)

The Poisson function shown in Eq. 1 is the probability
of finding the integer value n when the mean value of an
ensemble of measurements is µ (where µ is most often
not an integer value). The Poisson distribution is also a
normalized distribution so,

∑∞
n=0 P (µ, n) = 1.

In this particular experiment you will want to collect
data from a radioactive source using the GM tube. You
should select two different distances between the radioac-
tive source and the GM tube (or two different time in-
tervals) so you can observe:

1. a mean value of µ between 2-5 counts, and

2. a mean value of µ between 15-30 counts.

N.B. Make sure you plot the “number of counts,” not
the “counts/sec,” unless, of course, you’re measuring in-
terval happens to be one second.

Take at least 50 measurements at each of the two dis-
tances (100 measurements would be better), and plot
your values on a histogram. Calculate the mean (µ) and
standard deviation (σ) for each of these two histograms.
One of the properties of a Poisson distribution is that
its standard deviation is simply the square root of the
mean, σ =

√
µ. Confirm that this is true for the two

histograms you constructed. Using the two histograms
you constructed from your data collection, calculate the

variance σ2 for any distribution using the following equa-
tion:

σ2 = x2 − x2 (2)

where

x2 =
1

N

N∑
i=1

x2i

and

x =
1

N

N∑
i=1

xi

Compare the standard deviation σ using the above tech-
nique with the standard deviation σP from the Poisson
distribution (σP =

√
x). Do they agree? If they do, then

your histogram exhibits one of the fundamental proper-
ties common to all Poisson distributions. Try overlaying
the Poisson function (Eq. 1) to see how the shape of this
function matches the shape of your histogram. Multiply
the Poisson function by a factor A (e.g., the number of
entries in your histogram as a starting value), and ad-
just A until it “takes on” the shape and height of your
histogram. For more information refer to the Leybold
leaflet. I also wrote a Mathematica program showing
how to plot the Poisson function. Mathematica is able to
extend the Poisson function (Eq. 1) through non-integer
values when you plot it (e.g., it knows how to calculate
3.2! using Gamma functions).

C. Attenuation of γ-Rays

In this experiment, you will determine the attenuation
coefficient µ (“Oh great,” another definition for µ). The
attenuation coefficient µ (units of 1/length) is used to
describe the flux of γ-rays as a function of depth x into
a material. In this particular lab, the material will be
aluminum. The equation describing the attenuation is
similar to that used in radioactive decay and is shown in
Eq. 3.

I(x) = Io e
−µx + c (3)

where Io is the intensity (i.e., rate, counts/sec, or
counts/60 sec) with no material between the GM tube
and the γ-ray source; x is the thickness of the material
(e.g., aluminum) between the GM tube and the γ-ray
source; and I(x) is the rate recorded at the GM tube
when x cm of absorbing material is placed between the
radioactive source and the GM tube.

I would suggest the following procedure for measuring
the attenuation length of the aluminum.

http://physicsx.pr.erau.edu/Courses/CoursesS2014/PS315/Geiger%20Muller/Characteristics%20GM%20tube.pdf
http://physicsx.pr.erau.edu/Courses/CoursesS2014/PS315/Geiger%20Muller/Poisson%20Distribution%20exp.pdf
http://physicsx.pr.erau.edu/Courses/CoursesS2014/PS315/Geiger%20Muller/Poisson%20Distribution%20%28function%29.nb
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• Make a background measurement using the GM
tube with no radioactive sources or aluminum
present. In other words, “What is the number of
counts in a 60 second interval?” In this case, the
source of the background is cosmic rays.

• Next, take the γ-ray source (60Co) and place it
∼12 cm away from the face of the GM tube. Do not
introduce any absorbing material (i.e., aluminum)
yet. Record the number of counts over a 60 second
interval to obtain a “ballpark” value for Io. You
will fit this value after you have collected all your
data. Note: When you collect your data and de-
termine the error bars, make sure you record integer
values. For example, plot the number of counts /
60 seconds in the y-direction, and use the square
root

√
yi as your error bar for that data point.

• Place approximately 10-12 cm of aluminum be-
tween the GM tube and the radioactive source and
measure the rate over a 60 second interval. In
this case x ∼ 10 cm. Make sure this rate (e.g.,
counts/60 sec) is greater than the background rate
you measured up above. If it is not, then you may
need to start this section over and increase your
time interval to 60 seconds for all your measure-
ments. Note: I would encourage you to record all
your data over a 60-second interval.

• Remove ∼2 cm of aluminum and record the rate
over a 60 second interval, and record this value.
Keep repeating this step until you have removed
all the aluminum. Note: Do not change the
distance between the GM tube and the ra-
dioactive sources.

• Plot your data: Counts (counts in your 10sec inter-
val) vs. x(cm) and fit it to Eq. 3 to determine the
attenuation coefficient µ [cm−1]. You will proba-
bly want to add a constant term c to Eq. 3 in order
to account for the cosmic ray background in your
measurements.

• Finally, in order to improve the overall precision
of your measurements, you may want to extend
your time interval from 10 seconds → 60 seconds–
as mentioned above. This way you will accumu-
late more counts in your measurements and thus
improve your precision by 1/

√
N . Recording the

number of counts in a 60 second time interval usu-
ally leads to a more obvious exponential curve when
fitting the data.

• Repeat the above process for lead (Pb) and com-
pare your values of the absorption coefficient for
aluminum (Al) and lead (Pb). The inverse of
the absorption coefficient is called the absorption

length λ.

µ =
1

µ
[cm] (4)

For more information refer to the Leybold leaflet de-
scribing “Attenuation of α, β, and γ radiation.”

For your convenience, there is also a pdf file describing
what the measured attenuation lengths are for γ-rays in
aluminum at various energies. See how your result com-
pares to the accepted value. Note: the value of ρ in this
pdf file refers to the mass density of aluminum. A second
file containing attenuation lengths for aluminum can also
be found at this location.

I also included an energy diagram on my website
showing the energy carried by γ-rays resulting from 60Co
decays. Most of the γ-ray energies are 1.1732 MeV.

I also found this useful website describing the stop-
ping powers of α, β, and γ rays incident upon various
materials. When you go to the website, click on “In-
Depth-Discussion” for α, β, γ Penetration and Shielding.
When it comes to γ-rays, you can see that they are much
more penetrating because they do not carry charge.

III. IMPORTANT CONSIDERATIONS

Here are some things to remember when using the
equipment.

• Remove the soft hemispherical cap covering the
front of the cylindrical Geiger-Muller tube. It cov-
ers a very thin window separating the atmospheric
pressure from the partial vacuum inside the tube.
Remove the cap when you’re using the tube in the
lab, and put the cap back on it (to protect the win-
dow) when you are finished.

• If your counting rates are too low, extend the time
interval over which you record the number of counts
to a 10 second time interval, or possibly a 60 second
time interval. This is particularly important when
you make your first attenuation measurement with
10 cm of aluminum between the GM tube and the
radioactive source (60Co). You need to observe a
counting rate that is above the cosmic ray back-
ground before proceeding to smaller thicknesses of
aluminum.

• Don’t forget to perform your error analysis when
calculating the attenuation length of aluminum at
60Co γ-ray energies.

• Following the same procedure for calculating the
attenuation length of lead.

http://physicsx.pr.erau.edu/Courses/CoursesS2014/PS315/Geiger%20Muller/Attenuation_Range%20exps.pdf
http://physicsx.pr.erau.edu/Courses/CoursesS2014/PS315/Attenuation%20Length%20Experiment/Aluminum%20Attenuation.pdf
http://physicsx.pr.erau.edu/Courses/CoursesS2014/PS315/Attenuation%20Length%20Experiment/Aluminum%20Attenuation.pdf
http://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z13.html
http://physicsx.pr.erau.edu/Courses/CoursesS2014/PS315/Attenuation%20Length%20Experiment/Cobalt%2060%20Decay.pdf
https://sciencedemonstrations.fas.harvard.edu/radiation-and-radioactive-decay
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